

Objectives

- Describe TCP/IP Network Communications.
- Discuss Nmap Host Discovery.
- Discuss Nmap Port Mapping.
- Discuss Using Nmap to Identify Target Service and Operating System Data.
- Use Nmap to Perform Network Mapping.

TCP/IP Network Communications OSI Reference Model

TCP/IP Network Communications Data Headers

- The data to be transferred is broken down into smaller units known as segments, packets or frames
 - > This is done to reduce congestion and to make error recovery faster
- Headers will be added before the data is transmitted so that it can properly be processed when it is received

Simple connection

A typical network connection is made up of many steps involving many different protocols.

DNS - Domain Name Service translates the name www.blah.com into the IP address needed to allow communication between TCP/IP networks.

ARP - Address Resolution Protocol translates the IP address into the MAC address needed for system-to-system communications on a local network.

Port Numbers

Ports - Systems can establish communications with multiple systems and host multiple services. Port numbers are used to identify specific services and communication pathways.

TCP - Protocol that offers session-oriented, acknowledged, reliable communication

Source port address				1	Destination port address			
16 bits					16 bits			
Sequence number								
32 bits								
Acknowledgement number								
32 bits								
HLEN 4 bits	Reserved 4 bits	URG	ACK	P S H	R S T	S Y N	F I N	Window size 16 bits
Checkum 16 bits				Urgent pointer 16 bits				
Options and Padding								

- ▶ TCP flags are used to communicate the state of the connection
 - SYN Sync (Start)
 - ACK Acknowledge
 - FIN Finish
 - RST Reset
 - PSH Process data without delay
 - UGT Urgent data

▶ UDP - Alternate to TCP that offers simpler unacknowledged communication

0	15	16	31
Source port		Destination port	
UDP length		Checksum	

TCP Three Way Handshake

- The client sends a packet to the server with the SYN (synchronize) flag set indicating that it wants to establish a connection.
- The server responds to the client with a packet containing the SYN and ACK (acknowledge) flags set indicating that it acknowledges the client and wishes to establish a connection.
- The client sends a packet back to the server with the ACK flag set indicating that it acknowledges the server.

- ICMP (Internet Control Message Protocol) A support protocol designed to allow devices to communicate regarding issues such as router or general system reachability.
 - ICMP Echo Request/Reply- Also known as a ping this communications is designed to determine if a system is reachable
 - A small data packet (echo request) is sent from the source to the destination and the destination then responds (echo reply)
 - ICMP Timestamp Request/Reply A request for a timestamp so that time synchronization can be achieved

Nmap Host Discovery Warning

Inmap can DAMAGE or DISABLE network systems and equipment, use with CAUTION!!

Nmap Host Discovery Basics

Basic use: nmap host(s)

Examples:

- nmap 192.168.1.1
- nmap 192.168.1.0/24
- nmap 192.168.1.1-254
- nmap www.domainname.com

Nmap Host Discovery Options

Basic use: nmap option host(s)

Option	Explanation
-sn	No port scan, host discovery only
-Pn	No host discovery
-PR	ARP Scan - Only works if target is on same LAN as source
-PS	Perform a TCP SYN scan on port 80
-PA	Perform a TCP ACK scan on port 80 (Note: Superuser only) - Some firewalls block incoming SYN but not ACK
-PU	Perform a UDP scan on port 40125 - May generate ICMP unreachable if port is closed - If port is not closed responses vary

Nmap Port Mapping Options

Basic use: nmap option host(s)

Option	Explanation
-p port_num	Scan port port_num - Use - (-p-) to scan all ports
-sS	Stealth Scan (Note: Superuser only) - SYN->SYN/ACK->RST
-sT	Performs full handshake
-sU	Perform a UDP scan
-sF -sN -sX	FIN scan, NULL scan and an Xmas scan - TCP rules state that RST should be sent if port is closed, and invalid flag(s) are present

Nmap Port Mapping Idle Scan

An Idle scan (-sI) can perform a blind, difficult to trace port mapping

Nmap Port Mapping Port Status

Basic use: nmap option host(s)

State	Explanation
Open	Port is open
Closed	Port is closed
Filtered	A firewall is blocking the port
Unfiltered	A firewall is not blocking the port
Open Filtered	The port is either open or filtered
Closed Filtered	The port is either closed or filtered

Nmap Port Mapping Timing

Basic use: nmap option host(s)

Option	Explanation
-T0	Paranoid - 5 minute delay
-T1	Sneaky - 15 second delay
-T2	Polite4 second delay
-T3	Normal
-T4	Aggressive - 10 ms delay
-T5	Insane - 5 ms delay
max-hostgroup min-hostgroup	Maximum or minimum number of hosts to scan in parallel
max-parallelism min-parallelism	Maximum or minimum number of probes to perform in parallel

Nmap Target Identification

- Using the -A switch will tell nmap to attempt to identify the specific programs and operating system in use by the target
 - Will also attempt to identify version numbers
 - Uses techniques such as header signatures and banner grabbing
 - Very noisy
- Nmap also supports scripting to allow even more complex version detection or vulnerability scanning

Export Nmap Results

Option	Explanation
-oN filename	Export data to a text file
-oG filename	Export data to a text file in grepable (searchable) format
-oX filename	Export data as an XML file

Summary

- Describe TCP/IP Network Communications.
- Discuss Nmap Host Discovery.
- Discuss Nmap Port Mapping.
- Discuss Using Nmap to Identify Target Service and Operating System Data.
- Use Nmap to Perform Network Mapping.

For More Information

- For further information go to <u>https://www.nl.northweststate.edu/camo</u> or contact:
 - Tony Hills <u>thills@northweststate.edu</u> 419-267-1354
 - Mike Kwiatkowski <u>mkwiatkowski@northweststate.edu</u> 419-267-1231

Made possible through support from the National Science Foundation (NSF) award number <u>1800929</u>

